Feeds:
文章
迴響

Archive for the ‘未分類’ Category

廣告

Read Full Post »

Allen Lu Advance: 免費 RF 軟體及阻抗匹配 (Impedance Matching)

Allen Lu Advance: 免費 RF 軟體及阻抗匹配 (Impedance Matching).

Read Full Post »

TechNews 科技新報 – Chromecast 已被破解 核心為特製版 Android.

Chromecast 已被破解 核心為特製版 Android

formats

Google 新發表的 Chromecast 電視棒以 35 元低廉的價格,讓使用者輕易的插上電視就可以用來播放網路內容的構想,在發表後馬上引發各方消費者的興趣,雖然其功能有所限制,不過在各方努力的逐一挖掘下,發現 Chromecast 的未來各種應用的潛力可能比 Google 所設定的還要多。

 

Google 的 Chromecast 原本的設計是讓使用者在電視串流播放網路內容的產品,是無法播放任何在電腦、平板或手機上的內容,除非先把內容上傳到網路上,而唯一可以同步畫面方式的就只有 Chrome 瀏覽器,因為瀏覽器本來就是觀看網路的內容,因此可以做到如同同步畫面般的功能(其實只是各自同時抓取來自網路的內容)。

不過,現在已有使用者發現,只要在電腦的 Chrome 瀏覽器中先行安裝 Google Cast 這個延伸套件,就可以用來播放存放在電腦中的內容,比如說影片。而且播放過程很簡單,只要把影片所在的路徑貼到 Chrome 中,才按下「Cast this tab to…」就可以播放出去了。

Screen-Shot-2013-07-25-at-8.44.55-AM-650x437

▲透過 Chrome 的延伸套件,Chromecast 也可以播放電腦中的影片

 

對玩家來說,僅僅播放在電腦中是難以滿足的,因此有玩家就直接 Root 進 Chromecast 的核心,並發現 Chromecast 的系統核心並非來自 Chrome OS,反而是接近 Google TV,採用的是特製版的 Android 系統。

由於採用了 Android 系統,因此可以預想得到在經過權限設定與軟體開發的配合下,Chromecast 其實是可以擁有許多的可能,或許可以直接做到如同 AppleTV 一樣直接播放電腦中的影片,而不光只是網路的內容串流。

▲Chromecast 已被 Root,核心為訂製版的 Android,而非 Chrome OS

 

至於 Chromecast 的硬體架構,先前 iFixit 也把它拆精光了,得知其使用了來自 Marvell DE3005-A1 的處理器,這雙核心,時脈為 1.2GHz 的晶片同樣為 ARM 的 A9 架構,以他的效能來看,播放影片的效能應是夠的,加上 512MB DDR3 低電壓記體、2GB 儲存空間,以及 Wi-Fi b/g/n 與 Bluetooth 3.0 的無線傳輸功能,的確有空間可做到一些功能,看來可以預期在未來大概可以看到一堆與 Chromecast 有關的奇妙運用了。

LVfRRZmZ3kMUvPUT.large

▲Chromecast 採用來自 Marvell ARM A9 架構的處理器

 

新聞來源: 

Chromecast Teardown

Google Chromecast Root Released, Opening Up All Kinds Of Possibilities [VIDEO]

Tip: You Can Play Local Video Files Through Chromecast

延伸閱讀:

Chromecast 真的是 AirPlay 殺手嗎?

Read Full Post »

What is an LED light engine? – Zhaga Consortium.

What is an LED light engine?

An LED light engine is a combination of one or more LED modules together with the associated electronic control gear (ECG), also known as an LED driver. An LED module contains one or more LEDs, together with further components, but excluding the ECG.

Zhaga treats an LED light engine as a black box, with defined interfaces that do not depend on the type of LED technology used inside the light engine.

The Zhaga specifications define the interfaces between an LED light engine and an LED luminaire. They do not unecessarily restrict the design of the light engine, or the design of the luminaire.

 

Electronic Control Gear included

Zhaga specifications define the interfaces of an LED light engine, which always includes the elctronic control gear (ECG, or LED driver).

For some Zhaga specifications, the control gear is integrated with the LED module, while for others specifications the control gear is in a separate housing.

Zhaga does NOT specify the interfaces between the LED module(s) and the control gear.

Read Full Post »

無線傳感器網絡標準之爭—ZigBee與Z-Wave比較分析 @ Kenny 四處走走 :: 隨意窩 Xuite日誌.

雜誌 2007 無線RF測試專題

http://wenku.baidu.com/view/406f970c844769eae009edb8.html

​無線傳感器網絡標準之爭—ZigBee與Z-Wave比較分析

  一、ZigBee與Z-Wave發展狀況

  在無線傳感器網絡(WSN)領域中,多數人看好的是ZigBee,畢竟ZigBee有國際標準IEEE 802.15.4為其技術根基,且目標市場較廣、潛在需求用量較大。相對的,丹麥Zensys公司所提出的Z-Wave技術不僅沒有國際標準為其依靠,應用上也僅止於家庭自動化,不似ZigBee能同時適用在工控、醫療、安全等多種領域。
  就技術標準而言Z-Wave已矮於ZigBee一截,而推廣上,Z-Wave也一樣居於弱勢。Zensys極力避免他人認定Z-Wave是該公司專屬自用的技術,一旦如此認定,勢對Z-Wave的普及推廣產生阻力,所以Zensys發起、成立了Z-Wave Alliance的聯盟機構,期望以機構主導此標準的推廣,讓Z-Wave技術獲得更廣泛的採用。
  雖然Z-Wave Alliance已有100多家業者加入成會員,但仔細觀察會員名單,卻相當缺乏IT、通訊、消費性電子等3C領域的重量級業者來支持,相對的國際級的半導體業者幾乎都支持及參與ZigBee,因此Z-Wave連業者陣容、機構氣勢等方面也一樣不如ZigBee。
  不過,Z-Wave的氣勢低落是2006年1月以前的事,在此之後就風雲突變,首先是通訊設備大廠思科(Cisco)宣布投資Zensys公司(Cisco雖投資與支持Z-Wave,但主要也是將Z-Wave技術用在家庭性的無線應用產品上,此方面屬於Cisco旗下Linksys的業務範疇),並加入Z-Wave Alliance機構,之後在同年6月與Intel的創投單位Intel Capital宣布投資Zensys,且一樣加入Z-Wave Alliance,頓時Zensys、Z-Wave獲得IT、通訊兩大領域的重量級業者的力挺,氣勢大增。
  到了2007年1月,軟件巨頭Microsoft也呼應Z-Wave技術,在其.NET Micro Framework(簡稱:.NET MF)上加入對Z-Wave的支持,並宣布與Z-Wave Alliance中的會員業者Leviton 、ControlThink等共同研發Z-Wave應用,再加上PC外圍大廠Logitech(羅技)也推出使用Z-Wave技術的家庭遙控器,從這種種跡象來看,Z-Wave的發展並沒有想像中的悲觀,並且從單純的家庭自動化應用,擴展延伸到數字家庭的領域中。
  此外,Z-Wave標準與Z-Wave功效技術等在近年來也持續進步中,許多技術細節與支持芯片也都有所強化、提升。
  二、Z-Wave技術更新
  過去,若對Z-Wave有所了解的讀者,必然對Z-Wave的傳輸率表現感到印象深刻,不過這並非是強悍的深刻,反而是低落的深刻,Z-Wave的傳輸率僅有9.6kbps ,雖然WSN本就不強調數據的傳輸速度、傳輸量,但也不至於過低,以ZigBee來相對比較,即便不去談論2.4GHz頻段的250kbps傳輸率,在915MHz頻段上也至少有40kbps,或在868MHz頻段上也還有20kbps,ZigBee的三種速率模式都沒有低至9.6kbps。
  也許Z-Wave陣營已了解到此一弱處,並在之後進行強化改進,新的資料顯示,Z-Wave除了原有的9.6kbps速率外,也另增一個可達40kbps速率的模式,以此拉近與ZigBee之間的差距,如此ZigBee除了在2.4GHz的250kbps速率勝過Z-Wave外,另兩種模式與Z-Wave無太大差異。
  而且,Z-Wave提出的新速率能與原有9.6kbps速率的節點裝置完全兼容互通,即是在同一個Z-Wave網絡內能並存運用9.6kbps的節點與40kbps的節點,如此在佈建的規劃設計與延伸上可更便利。
  在使用頻段方面,Z-Wave也與ZigBee差距不大,Z-Wave雖不像ZigBee能在2.4GHz頻段使用,但也能在868MHz及908MHz(具體而言是868.42MHz及908.42MHz)的頻段工作,且與ZigBee相同的,868MHz頻段在歐洲地區運用,908MHz(ZigBee位於相近的915MHz)頻段則是在美國地區運用。
  至於無線發送的調製,Z-Wave依舊是使用原有的GFSK(Gaussian Frequency Shift Keying)方式。相對的,ZigBee在868MHz與915MHz頻段是使用BPSK(Binary Phase-Shift Keying)調製,而在2.5GHz頻段是使用正交式QPSK(Quadrature Phase-Shift Keying)調製。
  三、歐洲與美國地區的差異
  若更進一步了解,可以發現Z-Wave技術與今日其它新推行的無線技術一樣,經常遭遇到各地區電信法規的不同限制,而必須做出各種的因應與妥協。
  舉例而言,Z-Wave在歐洲所使用的868MHz頻段,在法規上有佔空比不得大於百分之一的限制,也就是說:Z-Wave真正在進行無線信號發送的時間與沒有在發送無線信號的時間,比例是1:99,若將時間刻度放大來解釋,即是發送1秒鐘的無線信號後,必須停止、閒置99秒,之後才能進行第二次發送,且發送時間一樣只能持續一秒,接下來又是長達99秒的等待。很明顯的,此項法規的限制也使Z-Wave不易提升其傳輸率。
  當然,在長達99秒的等待過程中,Z-Wave節點(或稱:裝置)可以進入休眠的省電狀態,藉此來降低功耗、節省用電,此方面Z-Wave已能達0.1 %的佔空比,同樣以時間刻度放大的角度來說明,若一樣以100秒為一個週期單位,Z-Wave可以只工作0.1秒,其餘99.9秒的時間都在休眠。
  雖然Z-Wave在歐洲的868MHz頻段上有佔空比的限制,但相對的在美國908MHz頻段上就沒有這項限制,所以理論上Z-Wave日後可以在908MHz頻段上有更高的速率提升空間。
  不過,美國的908MHz頻段卻也有另一項缺點,即是對發送功率進行限制,其發送功率不得高於1毫瓦,相對的歐洲在這方面的規範反而較寬鬆,只要在25mW內都屬合法使用,發送功率限制的結果也會連帶限制Z-Wave的發送距離、無線覆蓋率。至於ZigBee方面目前的最大發送功率也是在1mW(0dBm)內。
  四、二者間技術上的差異
  既然談及發送距離,那麼也必須比較Z-Wave與ZigBee間的發射差異,Z-Wave的發送距離為100英呎(約30公尺),且要達到如此距離必須在電波的傳送路徑上沒有任何阻擋,然而這並不表示Z-Wave無法進行穿透性傳輸,Z-Wave的無線發送依舊可以穿牆收發,不過穿越阻隔物的代價是減損傳輸距離,目前Z-Wave陣營尚未公佈穿透性傳輸表現的相關信息,只以不同的穿透材質而有不同的距離折損來說明。
  同樣的,ZigBee方面也並未有完整具體的傳輸距離信息,僅有32英呎∼246英呎(10公尺∼75公尺)的概略描述,且一樣表示必須依據實際發送的環境而定。
  Z-Wave與ZigBee之間除了傳輸速度、傳輸距離有別之外,在節點數目、拓樸型態、安全加密上也都各有不同。
  首先是節點數目,此方面Z-Wave並未有所改變,依舊是每個網絡內最多232個節點,若想與更多節點聯繫,就必須使用跨網的橋接(Bridge)技術才行。
  至於ZigBee方面,ZigBee的節點尋址達16-bit,理論上可以達65,536個節點,此遠遠勝過Z-Wave,此外ZigBee還能選用更大範疇的64-bit尋址,如此節點數就不可限量。更進一步的,IETF已擬定讓ZigBee與IPv6接軌整合的6loWPAN(全稱為:IPv6 over Low power WPAN),ZigBee節點將可以廣大Internet結合,這些方面Z-Wave都無法比擬。
  另外在連接拓樸方面,Z-Wave只有一種拓樸型態,即是網狀(Mesh),而ZigBee除了也有網狀拓樸外,也支持星狀(Star)、叢集狀(Cluster)等拓樸。值得注意的是,各節點除了自身所需的信號收發外,也會代為中繼傳遞其它節點的信號,無論是自身需求的收發或轉傳其它節點的信號,該節點都會脫離休眠狀態而進入運行狀態,而經常扮演中繼工作的節點將比其它節點更為忙碌,功耗也會較多,所以在實際佈建時的設計規劃上,也會盡量以非使用電池運行的裝置來擔任忙碌型中繼的角色。
  至於安全加密方面,ZigBee使用128-bit的AES對稱加密,而Z-Wave則是尚未有任何加密的設計,這其實不難想像,在Z-Wave最初只有9.6kbps的傳輸帶寬下,若再進行加密性傳輸,則實質數據的傳遞量將會更少,因此不太可能在9.6kbps中再行加密,不過Z-Wave將速率提升至40kbps後,也應該開始考慮提供加密的措施。
  五、二者間在應用領域的差異
  平心而論,Z-Wave在訂立之初就以家庭自動化應用為目標,而ZigBee則是追求更廣泛應用為目標,兩者各在最初指導思想就有不同的考慮,自然在規格上也有諸多落差,此實不能單就規格數據表現來論斷。
  特別是Z-Wave獲得Cisco、Intel、Microsoft等資通訊大廠的支持後,Z-Wave已從單純的家庭自動化應用,開始擴展延伸到數字家庭領域,甚至是家庭自動化與數字家庭的接軌整合等,加上Z-Wave的各項技術仍在持續提升,從9.6kbps增進到40kbps可說是該陣營的一大鼓舞,同時也是給ZigBee更大的競爭壓力。
  此外,ZigBee原先期望也用於PC外圍或消費性電子的遊戲玩具中,但就目前來看,無論是PC所用的無線鼠標、無線鍵盤,還是Nintendo Wii的無線遊戲控制器、Sony PlayStation 3的無線遊戲控制器,都是使用藍牙而非ZigBee,加上藍牙芯片已多年大量量產,組件的量價均攤已達高度成熟,ZigBee當初設定以更低價格取代藍牙在控制領域應用,此一構想的實現難度也日益增高。
  由此來看,現在最需要擔心的反而不是規格表現偏弱的Z-Wave,反而是追求應用領域最大化的ZigBee,很有可能落入“樣樣通、樣樣松”的結果。Z-Wave佔據家庭(家庭自動化、數字家庭;Bluetooth擁有信息(無線鍵盤/鼠標)、通訊(無線耳機/話筒)、消費性電子(電玩控制器),或許最後最適合ZigBee的將會落在工控、醫療等領域。

Read Full Post »

日本LED燈泡銷售陷入低迷 擴大戰略開始剎車 | LEDinside – LED, LED照明, LED交易, LED研究報告, LED市場, 所有LED專業資訊都在LED產業網.

日本LED燈泡銷售陷入低迷 擴大戰略開始剎車

 
 

日本正在舉國推進照明的LED化。在東日本大地震后的節電需求下,LED燈泡2011年以超過預想的速度在日本實現了普及。然而,本應為提前到來的普及而喜悅的照明廠商卻面臨著“白忙一場”的局面。LED化的確催生了新的增長領域,為照明市場帶來了一線光芒。但另一方面,長壽命化使得燈泡的更換需求減少,而且涉足企業的急劇增加,競爭環境反而更加嚴峻。一直固守穩定的日本國內市場的大型照明廠商不得不轉換業務結構。

8月上旬,在大阪市內的大型家電商場內,樓層一角的櫃檯里擺放著堆積如山的盒裝LED燈泡。包裝盒外面全部貼著主打“低價格”的標籤,比如“3個4650日元”、“5個7750日元”等。

偶爾駐足櫃檯前的顧客雖然也會看一眼燈泡,但隨即還是走向了樓層中央寬闊的吸頂燈賣場。

巡視賣場的銷售人員稱:“與2011年的這個時候相比,LED燈泡的銷售陷入了低迷。因價格下跌,持觀望態度的人很多,銷售方的期望落空”。

日本核電站的全面重新啟動尚無眉目,關西電力的轄區內要求普通家庭節電10%以上。但在歸屬於關西電力轄區的大阪,以節能為賣點的LED燈泡卻出現了滯銷。

日本全國的情況也是如此。老牌照明企業東芝照明技術的常務佐藤光治表示,“今年燈泡型產品的銷售額是2011年的80%左右。原本預測會在2013~14年達到峰值,現在看來,可能2011年就已經是峰值了”。

在全球規模為7萬億~10萬億日元的普通照明市場中,日本國內的規模為8000億日元左右。2011年,雖然LED照明產品的規模擴大到了17%出頭的1400億日元左右,但本應領頭的LED燈泡的銷售額卻開始出現陰影。

“停產普通白熾燈泡。今後將通過LED燈泡為大家送去光明”。

2010年3月,東芝自創業起已經連續生產了120年的白熾燈泡落下了帷幕。被指定為後續產品的LED燈泡卻開始出現銷量低於上年同期的情況。

說起來有點諷刺,需求失速的最主要原因是,因2011年發生東日本大地震后的節電意識提高,LED燈泡在普通家庭的普及時間提前了。而且,壽命比白熾燈泡長的LED通常使用10年都不會出現更換需求。

東芝照明技術的常務佐藤嘆息道,“在日本國內普通家庭等在使用的約2億5000萬個燈泡中,目前有近三分之一是LED燈泡。從LED的壽命來看,今後無望實現大幅增長”。

價格下跌速度超過平板電視

導致市場縮小的是LED燈泡價格的迅速下跌。

在Kakaku.com運營的價格比較網站上,最暢銷的是松下的LED燈泡“EVERLEDS”系列。2012年7月下旬,該系列某款新產品的平均價格由1月下旬的每個4480日元降到了3302日元,下跌了26%。

據Kakaku.com介紹,LED燈泡中價格半年降低3~5成的產品也不在少數。該公司首席執行官鐮田剛預測,“雖然LED正處於全面導入期,無法單純進行比較,但光從價格下跌的速度來看超過了平板電視。2012年度內燈泡型產品的平均價格或將跌破1000日元”。

LED燈泡開始在普通消費者中普及是在2009年。同年夏季,夏普以3900日元的價格推出了相當於40W白熾燈泡的產品,這一價格只有當時主流產品的一半,給行業造成了衝擊。之後的3年裡,雖然與100~200日元的白熾燈泡相比,LED燈泡仍屬於高價產品,但二者的差在迅速縮小。

雖然各照明企業對LED燈泡的收益性含糊其辭,但毫無疑問,價格降低的速度超過了量產效果。某知名部材廠商的負責人指出,“最低如果還賣不上2000日元,應該就不會有高利潤”。

價格急劇下降的原因在於LED照明的構造特性。

LED照明的光源採用通電即可發光的特殊半導體取代了以往的燈絲和螢光管。通過在相當於心臟部分的發光元件(晶元)中,將藍色LED的光照射到黃色等熒光材料上,或組合三原色的LED營造類似於自然光的白色光。

LED晶元方面,日亞化學工業、豐田合成、荷蘭飛利浦、德國歐司朗及美國科銳擁有相關專利。要想生產高品質照明產品,就需要從這5家公司採購晶元。

但反過來說,有了晶元、電路及燈口等所需部件后,則可以輕鬆組裝照明器具。與通過水平分工實現大路貨化的平板電視等數字家電屬於同種產品。跟擁有專用自動生產裝置的大型廠商從設計到製造全面負責的以往照明產品相比,很容易陷入價格競爭。

“中國已經有數千家生產LED照明產品的工廠”(大型LED材料廠商)。抓住了照明產品向LED過渡的絕好時機,委託海外工廠進行生產的其他行業企業也陸續涉足照明領域。

目前,Kakaku.com的網站上除了松下和東芝照明技術等知名照明廠商外,還有30多家其他廠商。其中不乏電腦企業、中小商社及台灣企業等。

調查公司也預測市場肯定會縮小。富士經濟推測,2012年擴大至377億日元的日本國內LED燈泡市場在2015年將縮小至363億日元,而到2020年將縮小至301億日元。

擴大戰略開始剎車

在日益嚴峻的市場環境中,開始停止擴大戰略的企業也日漸增多。新涉足企業中退出的廠商也不斷增加,而且並不僅僅如此。

日本國內知名LED照明廠商愛麗思歐雅瑪于2011年發生地震后迅速在位於大連的工廠內增強了LED燈泡的生產。該公司以省去了中間流通步驟的低成本化和多品種生產經驗為武器,自2009年全面涉足照明業務后僅2年的時間里,其LED燈泡的市場份額就超過了20%(該公司推測)。

即便是業績如此出色的愛麗思歐雅瑪,其社長大山健太郎現在也認為:“燈泡的價格下跌速度過快。我們不會繼續追隨”。

NEC照明於2011年秋季結束了分階段在中國的生產受托工廠增強LED燈泡生產線的計劃。就連計劃在日本市場擴大照明業務的飛利浦也採取了不在日本經營燈泡型產品的戰略,該公司表示,“在已經大路貨化的市場上戰鬥無意義”。

作為節電對策,日本政府2012年6月要求各廠商限制白熾燈泡的銷售。隨著地球變暖對策的推進以及節能法的修訂等,LED也沐浴島了政策的春風。但其先驅LED燈泡卻出現了“強弩之末”的感覺。

 (來源:日經商務周刊)

Read Full Post »

 Executive Summary

The LED market size climbed 58% to US$15.8 billion in 2010 from US$10 billion. The market size of LED for LCD TV backlight actually boomed to approximately US$3.9 billion from US$960 million driven by the explosion of LED-TV.

The market share of LED-backlit LCD TV arrived at 26.9% in 2010, and it is predicted to see 55.9% in 2011. Promisingly, LED will completely replace CCFL in 2014. The market share of LED-backlit NB rose to 95% in 2010 from the merely 59% in 2009; while that of LED-backlit LCD hit 15% in 2010 from 1.5% in 2009, and is projected to rest on 40% in 2012.

The global LED industry can be divided into four big regions elaborated as follows:

1. European & American region that focuses on general lighting and gives priority to the high reliability and high brightness of products;

2. Japan which boasts the most comprehensive technology and the most powerful strength in both general lighting and backlight display, with the development orientation attaching equal importance to general lighting, automotive, mobile phone, and TV;

3. South Korea and Taiwan that highlight the laptop display backlight, LED-TV backlight, and mobile phone backlight, featuring large shipment, low unit price, and meager gross profit;

4. Chinese Mainland which gives priority to yellow-green LED and aims at outdoor display, advertising screen, and signal lamp. The applications require low product technology and reliability, the clients are scattered and of small scales, yet the gross profit is not low due to the engineering projects in most cases.

Table of Contents

1. LED Market

  • 1.1 Market Size
  • 1.2 Present Price and Future Trend
  • 1.3 Small & Medium-sized Backlit LED
  • 1.4 LED-TV
    • 1.4.1 Market Size
    • 1.4.2 Key Manufacturers and Market Share
  • 1.5 LED-Backlit LCD
  • 1.6 LED Automotive Lighting
    • 1.6.1 Market
    • 1.6.2 Chinese Automotive Lighting Industry
  • 1.7 LED-Backlight Laptop Market
  • 1.8 Outdoor Billboard Market
    • 1.8.1 Global Outdoor LED Billboard Market
    • 1.8.2 Chinese Outdoor LED Billboard Market
  • 1.9 LED Lighting Market

2. LED Industry

  • 2.1 Regional Distribution
  • 2.2 Ranking of Global Top 25 LED Vendors
  • 2.3 Taiwan LED Industry
    • 2.3.1 Industrial Pattern
    • 2.3.2 Ranking of Taiwanese LED Epitaxy Vendors, 2010
    • 2.3.3 Ranking of Taiwanese LED Packaging Plants
  • 2.4 Chinese Mainland LED Industry

3. LED Upstream Industry

  • 3.1 Overview of Sapphire Substrate Industry
  • 3.2 Price Trend of Sapphire Substrate
  • 3.3 Sapphire Substrate Market
  • 3.4 Supply & Demand of Sapphire Crystalbar
  • 3.5 RUBICON
  • 3.6 Acme Electronics
  • 3.7 Teraxtal
  • 3.8 Crystalwise
  • 3.9 MOCVD Machine
  • 3.10 AIXTRON
  • 3.11 VEECO

4. Taiwanese LED Manufacturers

  • 4.1 Everlight Electronics
  • 4.2 Epistar
  • 4.3 Genesis Photonics
  • 4.4 Arima Optoelectronics Corporation (AOC)
  • 4.5 Formosa Epitaxy
  • 4.6 LiteOn Technology
  • 4.7 Bright Led Electronics
  • 4.8 Optotech
  • 4.9 Harvatek
  • 4.10 Tekcore
  • 4.11 Unity Opto
  • 4.12 Huga Optotech
  • 4.13 Lextar Electronics
  • 4.14 Tyntek
  • 4.15 Ediosn Opto

5. Chinese Mainland LED Manufacturers

  • 5.1 Epilight Technology
  • 5.2 Hunan HuaLei Optoelectronic Corporation
  • 5.3 Hangzhou Silan Azure Co., Ltd.
  • 5.4 Sanan Optoelectronics
  • 5.5 Jiangxi Lianchuang Optoelectronic Science and Technology Co., Ltd.
  • 5.6 Inspur Huaguang Optoelectronics
  • 5.7 Foshan NationStar Optoelectronics Co., Ltd.
  • 5.8 Rainbow Optoelectronics
  • 5.9 Lumei Optoelectronics
  • 5.10 Changelight
  • 5.11 Elec-Tech
  • 5.12 Neo-neon

6. Other LED Makers

  • 6.1 CREE
  • 6.2 Toyoda Gosei
  • 6.3 Nichia
  • 6.4 OSRAM OPTO SEMICONDUCTOR
  • 6.5 Philips Lumileds
  • 6.6 Stanley
  • 6.7 Seoul Semiconductor
  • 6.8 LG INNOTEK
  • 6.9 Samsung LED
  • 6.10 LUMENS

Read Full Post »

Older Posts »